动画专业用什么显卡(学动画用什么显卡好一点)
【温馨提示】本文共有21386个字,预计阅读完需要54分钟,请仔细阅读哦!
目录:
- 1、蓝戟锐炫 A770 显卡评测:性能更强价格更低,2K 显卡新选择
- 2、优派VP2776显示器评测:一款能玩游戏的专业显示器
- 3、iGame RTX 3090九段评测 3万元显卡天花板
- 4、学习3dmax动画渲染的电脑配置?附配置价格!
- 5、技嘉AERO 17 HDR XB设计师笔记本Blender性能测试:让3D动画制作的光影飞舞
蓝戟锐炫 A770 显卡评测:性能更强价格更低,2K 显卡新选择
之前我们测试过 Intel 最新的独立显卡产品锐炫 A770 和 A750,而在新品发布后的不久,英特尔显卡首家核心合作伙伴蓝戟也推出了它们的非公版锐炫高端系列 GPU 产品:蓝戟锐炫 A770 flux 影系列。不仅有着更强劲的散热和更强劲的性能,价格方面比公版还要更低一些。首发 2799 元的价格称得上有性价比。
IT之家也是提前收到了蓝戟锐炫 A770 这张显卡。从包装上就能看出蓝戟的用心,他们并没有一味追求大,而是力求精致小巧易收纳。用防静电 EVA 取代了较消耗损毁的静电袋。此外还增加了内衬纸和潮牌吊牌式的说明书,更美观也更年轻化。
在本文中我们就来进行详细的测试,看看这款性价比非公产品的体验究竟如何。以下是测试平台:
外观设计
蓝戟锐炫 A770 是一张 2.5 槽厚的中等大小显卡,上方有越肩设计,相比于公版 A770 更大一些,想必在散热上堆料更加充足。
蓝戟锐炫 A770 整体设计方正,与公版不同的是,蓝戟锐炫 A770 的金属感更强,观感上更加高端。据悉蓝戟产品设计师在此次高端 FLUX 影系列采用的是 NEO 美学,遵循未来主义美学主张,他认为在面向未来前进的过程中,一切惯常之物都会掉队,设计同样如此。于是从极致的实用性出发,致力于与用户建立一种与时俱进、活力十足的关系,而不是脱离用户展示产品个性。
散热器部分采用三风扇设计,相比公版的双风扇散热更加充裕。风扇上有 GUNNIR 的 Logo。
供电方案也有了一些变化,公版是 8Pin 6Pin,而蓝戟锐炫 A770 这款非公版则是双 8Pin 的供电方案,相比于公版更加宽裕,相信在后面的烤机环节会有惊喜。当点亮时,上方的 GUNNIR 三角形 LOGO 会循环发光,在侧透机箱里看着更加灵动。
视频接口方面依旧是标准的 3 个 DP 2.0 1 个 HDMI 2.0,可以支持最高 8K 视频输出。
接口为标准的 PCIe Gen 4.0 x16。值得一提的是主板必须支持并打开 Resizable BAR 功能,才能充分释放锐炫显卡的全部性能。
架构解析
英特尔锐炫 A 系列产品全部基于 Xe HPG 架构打造,包含了强大的 AI 引擎和增强的媒体引擎。新的 Xe 显示引擎和新的图形管线引入其中,用来处理各种不同显示任务。每 4 个 Xe 内核组成一个渲染切片,而每一个 Xe 内核中都配备了数量可观的运算单元,如矢量引擎 XVE,矩阵引擎 XMX。此外 Xe HPG 也集成了其它主流图形技术,如网格着色,采样器反馈等,在渲染切片中都能够找到其相应的硬件支持。
英特尔 Xe HPG 架构中最关键的要属 Xe Vector 矢量引擎,这是为了给浮点运算(FP)提供专用执行端口,英特尔对 ALU(算术逻辑单元)进行了改进。这使得 FP 指令可以与整数运算 (INT) 指令同时运行,其中包括 DP4a 的快速 INT8 计算。
至于锐炫 GPU 的 Xe-core 的整体架构,大家可以看 Intel 提供的下面这张平面图。不同的锐炫 GPU 在运算单元数量上可能有所不同,但大体结构均是如此。
GPU-Z 读取到的显卡基本规格如下,公版锐炫 A770 默认功耗均为 225W,但蓝戟锐炫 A770 的功耗给的更加宽裕,有需要的话可以在控制面板手动拉满,获得更强的性能,但本文中我们均会在默认功耗下测试。
理论性能
当然大家最关心的还是蓝戟锐炫 A770 核心性能如何,相比于公版卡有多大的优势呢?IT之家接下来先进行一下压力测试。在烤机 10 分钟后,功耗都稳定在 209W 左右,温度也在 68℃,不仅功耗比公版高了近 20W,温度还降低了 5℃,看来这个散热做的非常出色。
我们再进行 3DMark 的理论跑分,然后把它与公版卡以及同价位的显卡进行对比。与烤机结果相仿,蓝戟 A770 的性能比公版 A770 要略高一些,各项的理论分数已经和 RTX 3070 不相上下。而且与以往我们对“锐炫显卡 DX12 强势,DX11 短板”的刻板印象不同,它传统 DX11 性能也并不差,同样超越了 RTX 3070,而光追性能则与 RTX 3060Ti 相仿。
在光栅性能出彩的基础之上,蓝戟锐炫 A770 还支持 XeSS 超级采样技术,这个技术和 DLSS / FSR 类似,是利用 AI 进行超分辨率以及图像合成,实现高性能和高保真视觉的全新升频技术,最高可让帧数可提高 2 倍,相比于之前我们测试 A380 时的游戏库,如今 Xess 的游戏库又大了不少,希望能尽快适配更多的游戏吧。
Xess 的具体效果怎么样呢?我们可以借用 3DMark 提供的 Xess BenchMark。从中我们能直观的看出 Xess 对游戏帧数巨大的提升。
在不同的档位下,XeSS 能带来的帧数提升从 50% 到 130% 不等,效果可以说是相当明显的。并且由于 AI 缩放的原理,其实画质的损失并不大。笔者的建议是 1080P 分辨率下开到品质档,2K 分辨率下开到平衡档,4K 分辨率再开性能档。
从上述测试可以看出,蓝戟锐炫 A770 的性能比公版要略强一些,并且已经远远超过了在发布会上对标的 RTX 3060,Intel 这波确实有些谦虚了。
游戏实测
那么蓝戟锐炫 A770 会不会是“高分低能”呢?能不能在游戏中延续跑分中的惊艳呢?会不会遇到驱动的兼容性问题呢?我们先选择几款支持 XeSS 技术的新游戏来测试一下,然后再对比几款热门的传统游戏。测试全程会在 2560*1440 分辨率最高画质下进行。
首先是一款画质爆炸的 3A 游戏《幽灵线: 东京》,这款游戏堪称硬件杀手,2K 分辨率下开启光追后只有 20 多帧,但我们可以用 XeSS 技术,以更低的分辨率渲染,再放大到高分辨率,实现帧数的翻倍。
我们特地选取了一个光照强烈的场景。在这里实测不同档位的 XeSS 帧数,2K 分辨率下开启平衡档,便能实现 60 帧以上畅玩光追。看来想要玩 2K 光追大作的话还是要这类超分辨率技术介入才行。
在另外一款经全新的日式战棋游戏《神领编年史》中,也提供了光线追踪和 Xess 技术的支持。这样的俯视角战斗中其实效果不明显,但是在技能动画时效果还是很棒的。
在《神领编年史》中,不开 Xess 已经能基本满足流畅游玩 2K60 帧了,但开启 Xess 后就可以挑战更高分辨率和更高刷新率了,游戏体验显著改善。
这次我们额外测试一款街头涂鸦风的游戏《Arcadegeddon》。这款游戏虽然是低多边形风格,但也提供了光线追踪和 Xess 技术的支持。
作为一款射击 动作游戏,是需要更高的帧数来提高射击手感的。实测蓝戟 A770 的帧数如下,开启 Xess 后可以满足全程 60 帧以上有游玩。
最后有请跑分常青树《古墓丽影: 暗影》,这款经典 3A 也适配了 Xess 技术,的确是相当难得。
在不开启 Xess 时,想要 2K 流畅游玩有难度,但在开启 Xess 后,帧数最高可以实现翻倍的效果,终于能实现 2K 高帧游玩。
、
看来在 Xess 的帮助下,蓝戟锐炫 A770 已经能实现在光追大作中 2K 畅玩。那么在不支持 Xess 的传统游戏中,它们的光栅性能能否经得住考验呢?我们接下来先测试一下《CS:GO》的 BenchMark,实测蓝戟锐炫 A770 帧数达到了 262 帧,是非常流畅的。
在《绝地求生》中,全极致特效下蓝戟锐炫 A770 的平均帧数达到了 110 帧左右,2K 畅玩吃鸡当然不在话下。
创意生产
AV1 编码是英特尔下注的一个重要技术。我们熟悉的视频编码器有 H.264、H.265、AVC 等,但这些编码器已经不适应视频爆炸增长的时代了。我们急需一种压缩比更高的视频编码技术。AV1 就应运而生了。作为低成本高效率编解码方案的代表,AV1 比目前最为普遍的 H.264 编解码器还要高出 50%,比 HEVC 高出 20%,因此能够以更低带宽和更小文件提供更高质量的画面。而且 AV1 是完全开放没有任何授权费用的编解码器,因此具备低成本优势,其行业前景非常可观。
对于英特尔而言,锐炫 GPU 由于抢先一步对 AV1 提供了硬件支持,所以也被赋予了一定的视频生产力的属性。比如 Davinci 和万兴喵影这两款流行的视频软件,就已经对蓝戟锐炫 A770 的 AV1 视频编码提供了支持。
此外,国产视频剪辑软件万兴喵影也提供了 AV1 编码的支持。
通过测试可以看到,在进行 AV1 编码时,A770 都能够提供更加高效的 GPU 加速支持,这样就可以大大缩短编码时间,为内容创
人工智能 AI 是 Intel 重点布局生产力的另一大特性。得益于 XMX 矩阵引擎,它拥有超越价位的 AI 算力,能涵盖最常见的 AI 数据类型如 BF16 和 INT8,这使得锐炫显卡特别是大显存的 A770 在 AI 应用中能施展拳脚。
这里我们使用 Topaz Video Enhance AI 这款软件,对视频进行 AI 放大测试。然后放大一个游戏的录屏素材,测试时我们分别检验了锐炫 GPU 加速和仅 CPU 状态下的耗时,测试结果如下:
↑ 锐炫 A770 AI 加速耗时 2 分 31 秒
↑ 纯 CPU 计算耗时 28 分 42 秒
通过测试可以看到 AI 加速的优势非常显著,差距有 10 倍至多。因此如果你有基于 AI 的图片、视频类应用需求的话,可以尝试一下蓝戟锐炫 A770 显卡 Topaz AI 这样的软硬件搭配。
总结
通过测试结果可以看到,蓝戟锐炫 A770 可以说是一款 2K 游戏的甜品级显卡,在 XeSS 中的表现更是令人惊艳,完全可以实现 2K 光追高帧率畅玩。而在不支持 XeSS 和光追的游戏中,它们的光栅性能表现也不差,完全可以作为主力游戏显卡使用了。
在性能之外,蓝戟锐炫 A770 也展现出了对非公显卡的认真态度。它不仅颜值出众,散热扎实,而且从包装这类小设计上也能看出蓝戟作为一个新兴显卡厂商对自己品牌的重视。如果能保持这份态度的话,相信蓝戟能继续坐稳英特尔顶级非公显卡厂商的位置。
对于纯粹游戏的玩家们来说,A750 就已经可以满足需求。对于生产力群体可能需要 16G 大显存的加持,那么就需要上蓝戟锐炫 A770 了,目前蓝戟锐系列显卡已经上市,虽然蓝戟锐炫系列显卡性能全面领先公版,售价甚至还要更便宜,感兴趣的话可以前去选购:
GUNNIR Intel Arc A750 Photon 8G OC:首发到手价:2399 元
GUNNIR Intel Arc A750 FLUX 8G OC :首发到手价:2499 元
GUNNIR Intel Arc A770 FLUX 8G OC :首发到手价:2699 元
优派VP2776显示器评测:一款能玩游戏的专业显示器
对专业显示器来说,丰富且精准的色彩是必备条件。对电竞显示器而言,高刷新率和快速响应时间同样不可或缺。当我们对显示器的固有印象,被局限在一定范围内的时候。优派为我们提供了一种全新选择,谁说专业显示器不能玩游戏?
VP2776是优派全新ColorPro VP76系列专业显示器的首款产品,它搭载的2K分辨率Nano-IPS面板,除了具备优秀的色彩表现之外,还提供了专业级显示器并不常见的165Hz高刷新率。使它既符合设计师对精准色彩的要求,还能在工作之余为用户提供畅快的游戏体验。下面,笔者就为大家带来这款优派 VP2776的详细评测。
01 特点总结
在正式开始评测前,笔者总结了优派 VP2776最重要的几个特点,以便大家对这台显示器建立初步认知。
1. 27英寸2K分辨率的原装LGD Nano-IPS面板,支持SuperClearTM硬屏广视角技术,任何角度画面呈现依旧清晰无色差。
2. 拥有100% sRGB、98% DCI-P3、87% Adobe RGB色域覆盖率,10.7亿色显示,以及△E均值<2的专业色准。通过全球权威色彩机构潘通的色彩认证,能提供绚丽精准的色彩表现。
3. 支持160Hz高刷新率、MPRT 1ms疾速响应时间,并配备G-Sync compatible同步技术。在满足动态视频剪辑的同时,还兼具出色的游戏性能。
4. 配备的全新ColorPro控制器,不但能进行OSD菜单调节,还兼具校色仪功能。使专业人士可以随时为屏幕校色,时刻确保显示器拥有精准的色彩呈现。
5. 搭载双Type-C接口,分别支持90W和15W的反向充电,提供了更便捷的移动设备连接体验。
6. PBP/PIP分屏功能,可以进行画中画和双画面显示,并且支持一屏双色域,使用者可以单独设置两个画面的色彩模式,比较不同模式下的画面效果。搭配KVM功能,仅连接一套键鼠就能同时控制多个设备,使用体验更便捷高效。
02 外观设计
优派 VP2776采用了专业显示器标准的纯黑配色,正面为一块27英寸的LGD原厂Nano-IPS面板。三边微边框设计的加入,让设计师能不受边框带来的视觉干扰,更加专注于作品本身。
作为获得了德国iF红点设计奖和日本G-Mark设计奖的产品,优派 VP2776的背部设计才真正体现出它的工业设备美感。显示器背部采用极简对称的设计理念,营造出了优秀的视觉平衡感。顶部居中镶嵌着的“ViewSonic”标识,没有进行额外的颜色填充,使得背部看上去更加沉稳和谐。
标识的下方凹槽部分为显示器内置灯带,可以通过OSD菜单可以进行白色、暖白色、黄色的三色光调节。在较暗的使用场景下开启,能削弱屏幕光对视力产生的影响,起到缓解眼部疲劳的作用。
优派 VP2776独特的支架造型设计,相比传统支架具有更大的可调节角度。通过卡扣结构与屏幕部分进行连接,只需对准卡槽下压即可完成安装,更加便捷高效。支架采用全金属材质,具备的出色的质感和稳定性。
支架下方的理线槽开口尺寸适中,长条形的设计在穿过多条连接线时,能有效避免线材缠绕情况的产生,细节表现让人满意。
这款显示器的底座部分同样采用金属材质,得益于方形的纯平面设计,使得优派 VP2776不仅桌面空间占用更少,而且还能放置手办等装饰物件。底座左上方为专门放置ColorPro控制器的圆槽,体现出优派在设计上对实用性的重视。
此外,优派 VP2776作为一款专业设计显示器,还随箱配备有遮光罩,可以避免环境光对画面色彩带来的干扰。遮光罩表面为绒布包裹,触感更加细腻。通过磁吸的安装方式,拆装都很方便。采用可折叠的设计,收纳起来几乎不会占用什么空间。
03 功能体验
角度调节方面,优派 VP2776体现出独特设计所带来的优势。显示器支持130mm上下升降、90°横竖旋转(左右都可调节)、60°左右侧转,以及-3到21°前后俯仰的多种调节方式。 无论是工作学习还是游戏观影,都能找到一个舒适的使用角度。
接口方面,优派VP2776配备配备有两个HDMI 2.0、一个DP 1.4、一个90W Type-C 、一个15W Type-C、一个USB上行、两个USB3.0、一个Micro USB,以及音频输出接口。丰富的接口配置,可以满足使用者常见的连接需求。
其中,全功能Type-C接口的加入,在连接笔记本等移动设备设备时,能同时进行画面传输和90W高功率反向供电,提供了便捷的使用体验。
优派 VP2776的OSD菜单支持两种调节方式,除了显示器背部的五维摇杆以外,还配备有独立的ColorPro控制器。控制器采用旋钮加按键的控制方式,顶部按键可以唤出OSD菜单或进行确认操作,左右旋钮能实现选项切换,侧边按键则起到了返回的作用。
在不调出OSD菜单的情况下,调节旋钮能进行色彩模式的快速切换。并且在打开ColorPro控制器底部的盖板后,这台控制器还能兼具校色仪功能,可以满足设计师随时为显示器进行校色的使用需求。
接下来,我们看一下优派 VP2776的OSD菜单还内置了哪些功能。
优派 VP2776的颜色模式内,拥有包括DCI-P3、sRGB、REC709在内的多种专业色彩模式。并且还能对不同模式的亮度、色温等详细参数进行调节,可以满足专业用户对色彩表现的严格要求。
针对不同用户的使用场景需求,优派 VP2776还内置了CAD/CAM、视频编辑、动画、摄影四种专业色彩模式。此外,还有专为游戏玩家定制的FPS1、FPS2、RTS、MOBA四种游戏模式,使各类玩家都能选择到合适的画面表现。
优派 VP2776搭载的PIP/PBP功能,可以开启画中画或双画面显示。并且,在显示器在开启双画面模式时,还能单独为画面进行色彩模式调节。便于设计师对比修图前后的呈现效果,获得更高效的工作体验。
PIP(画中画)模式
PBP(双画面)模式
双色模式
此外,优派 VP2776还支持自动垂直旋转功能,但是需要通过官方的vDisplay Manager软件来启用。
自动垂直旋转功能
04 校色功能
优派 VP2776显示器支持硬件校准,通过校准显卡和显卡器之间的信号传输,确保色彩长期保持一致性。我们需要提前在电脑内安装Colorbration软件,以此来激活校准功能。
除了ColorPro控制器自带的校色仪之外,还支持Datacolor SpyderX series、X-Rite i1 Display Pro等多种专业设备进行校色。
使用ColorPro控制器校色的过程非常方便,只需在Colorbration软件中选择Calibration选项,然后点击下方的“Start Calibration”。根据提示将校色仪放在中心的圆圈范围内点击“Next”,就可以等待生成校色报告了。
05 色彩测试
优派 VP2776搭载的Nano IPS面板,拥有非常通透的色彩表现。配合上2K分辨率,使画面的呈现效果更为细腻真实。下面,来看看这款显示器的屏幕实拍表现。
下面,我们借助专业仪器来对优派 VP2776的色彩表现进行测试。本次测试的仪器为Spyder X Elite校色仪,测试项目包括色域、色调响应、灰阶、色温一致性、色彩均匀性以及色彩精确度。测试前已把显示器恢复出厂设置,并进行一小时的预热。因测试环境差异,结果可能与官方数据存在正常范围内的轻微偏差。
通过实测结果来看,优派 VP2776在sRGB色域的覆盖度为100%,Adobe RGB色域的覆盖度为90%,P3色域的覆盖度为97%。
色调响应方面,已测量的黑色曲线应该尽量和浅蓝色的“光度2.2”曲线保持一致,可以看到实测的黑色曲线和“光度2.2”几乎重合,色调响应表现非常好。
灰阶方面,优派 VP2776显示器在40%-85%的亮度下表现平稳,整体色温维持在7100K上下。
在色温一致性方面,优派 VP2776在0-75%亮度下,白点色温始终维持在7000,表现非常稳定,比标准色温偏冷。
在色彩均匀性的测试中,可以看出优派 VP2776的第4象限最接近D65的标准,显示器面板的第9象限与标准色温值有一定差距,差距数值为4.8,显示器整体的色彩均匀度表现比较优秀。
色彩精确度方面,优派 VP2776测试的48种颜色平均△E值为0.69,并且各颜色表现均衡。当0<△E<2时,人眼基本上分辨不出色彩的差异,由此可见,这款显示器的色彩还原能力非常不错。
06 评测总结
面对优派 VP2776这款拥有出众色彩和强劲性能的显示器产品,选择任一角度来说明都略显片面。因此,我想从专业设计和游戏表现两方面的实际体验来进行总结。
专业设计
Adobe公司旗下的Photoshop(PS)作为应用最广泛的专业修图软件,我们就先体验一下优派 VP2776在使用PS时的呈现效果如何。通过实际使用下来,这款显示器丰富精准的色彩,能够呈现出细微的色彩差异,使我们在调色过程中可以掌控画面的每一处细节。
游戏表现
在游戏体验方面,优派 VP2776拥有165Hz高刷新率、1ms MPRT急速响应时间,完全符合游戏玩家对电竞显示器的需求。我们在玩《无主之地3》时,无论是快速移动时的画面清晰度,还是操作过程中感受到的丝滑感,都很难让人相信这是一款设计显示器所带来的体验。
如果你的日常工作对显示器色彩表现有着较高的要求,并且在工作之余还是一名游戏玩家。那么,优派 VP2776绝对可以符合你对于显示器的所有期待。
iGame RTX 3090九段评测 3万元显卡天花板
在中国汉语中,与“九”颇有渊源,九为数之大者,九九归一、九五之尊、一言九鼎;同时又由最大的数字代表至阳,用作时令名,从冬至起每九天为一“九”。书有三品九等,棋有九段入神,关于“九”的故事一文难表,而今天我们要说的则是来自于七彩虹——iGame GeForce RTX 3090 Kudan(九段)。
九段显卡是七彩虹最高技艺的体现,无所不用其极的设计和用料,让这张iGame GeForce RTX 3090 Kudan(九段)成为显卡中的奢侈品,在评测开始前笔者为大家总结一些该显卡的特点,也方便大家有针对性的阅读:
1.奢华用料
2.一键超频后Boost频率1860MHz
3.出色的超频空间
4.精致的外甲设计
5.风水混动散热
6.高清LCD侧屏
7.购买即享受独立服务团队
iGame GeForce RTX 3090 Kudan(九段)作为工匠之力的典范,融合了大量设计元素,其中达芬奇手稿中的机械齿轮贯穿整个外甲,独到的半边科技半边工业,也让新一代的九段于简约设计中流露的工业设计魅力。
独特的风水混动散热,让该显卡一直保持在温度较低的工作环境,即使超频后也能保持稳定不变的温度,而七彩虹一直引以为傲的LCD翻转屏在九段中再次得到体现。
iGame GeForce RTX 3090 Kudan(九段)
另外,这款高达3万元的iGame GeForce RTX 3090 Kudan(九段)属于限量款产品,数量稀有,外加旅行箱上的编号外,这是属于你独一无二的显卡。下面就让我们来看看这款iGame GeForce RTX 3090 Kudan(九段)如何能称为卡皇。
01 iGame GeForce RTX 3090 Kudan(九段)外观
每一款旗舰显卡的外观设计都是玩家关注的重点,而iGame更是将这款显卡视为工艺品去雕琢。本代九段以“蒸汽朋克”为主基调,附加了多种元素点缀,当然每一代九段不仅在卡身的设计上下功夫,包装也是极其精致。
iGame GeForce RTX 3090 Kudan(九段)外包装及显卡本体
作为自家限量版的超旗舰,iGame GeForce RTX 3090 Kudan(九段)的外包装采用特制的旅行箱,在箱子正面靠下的位置有专属的编号,内部为显卡主体和冷排,并且防震棉包裹的异常厚实。
内部配件
这么精致的旅行箱,肯定不会只装显卡,在箱子最底部为一套可替换螺丝刀,同时显卡支架也更为与众不同,附赠的螺丝都金光耀眼,另外的小盒子里为定制的九段显卡键帽,出自ZOMO工作室之手,雕工异常精致,可装在SHIFT或回车等长度的键位。
在旅行箱的网兜内,还有一双非常厚实的保护手套,ARGB灯光同步线和LCD屏幕素材上传线。
iGame GeForce RTX 3090 Kudan(九段)卡身
首先显卡本体,看到如此多的齿轮元素,想必大家都能猜到,这一代iGame GeForce RTX 3090 Kudan(九段)设计灵感源自“蒸汽朋克”。虽然导流罩包含了大量细小元素,但卡身整体依旧保持了黑灰双色材质塑造,没有过多冗余细节,有着浓重工业感的风格同时,恰到好处的烘托了金色齿轮作为点缀。
iGame GeForce RTX 3090 Kudan(九段)的卡身整体尺寸为316×182×61mm,除了多出的两个冷头衔接处,大体与我们常见的显卡没有区别。
45°九段折角
前面我们提到,卡身的整体设计采用半边科技半边工业的思路,正如上图所示。iGame GeForce RTX 3090 Kudan(九段)将卡面斜切,一分为二。
右侧机械感
卡面右侧线条及凹凸起伏较多,并标有年轮和“混合冷却”的英文字样,整体表现出厚重的机械感。而散热风扇的logo牌上还有“Ampere”架构、“光线追踪”、“九段”的英文字样。
左侧科技感
卡面左侧设计则明显更偏向现代轻科技的扁平化,表面采用磨砂工艺处理,整体高度一致。并且在齿轮边,还有“560 Ti-AIR-KIT”的字样,这是第一代九段采用的“AIR-KIT”辅助散热系统。
iGame GeForce RTX 3090 Kudan(九段)所有的多层齿轮结构和散热套装,200多块金属件精度均控制在0.3mm以内,全部使用CNC技术单独合金雕刻,充分体现何为显卡界天花板。
GTX 560 Ti 九段
上图为装上“AIR-KIT”辅助散热套件的GTX 560 Ti九段。另外笔者发现一个有意思的信息,第一代九段即为GTX 560 Ti,售价3000元,发售时间为2011年;而我们评测的这款RTX 3090九段,发售时间为2021年,正好过去10年,价格也由3000元涨到了30000元,正好10倍。
九段左下角采用蚀刻大马士革钢纹处理
iGame GeForce RTX 3090 Kudan(九段)左下角采用了蚀刻大马士革钢纹处理,颇有复古感,与右上角形成画框一样的装饰,将九段这一“作品”烘托其中。
在风冷主动散热部分,三个风扇均采用了GeForce RTX 30系列新研发的13叶边缘折角“捕风手”定旋扇叶,可将气旋压入散热器内实现风压及进风量的进一步提升。
LCD侧显示屏
第三代可翻转LCD侧显示屏——Way“维”,给水冷管让出了充分的空间,来到了显卡最右侧,无论玩家打算如何安装冷排,都不会影响到显示效果。
开机默认动画效果
由于相机实拍屏幕会出现摩尔纹,所以效果并没有直接观看好,但这的的确确是素质超高的一块屏幕,上图为显卡默认开机动画。
可自定义显示效果
这块屏幕像素为480×128 px,玩家可自行在PS中制作图片,并通过iGame Center自定义上传,可爱的小姐姐还是喜爱的游戏角色由你选择。
iGame GeForce RTX 3090 Kudan(九段)背板
iGame GeForce RTX 3090 Kudan(九段)背板同样采用了45°折角设计,一半凹槽纹理,一半磨砂工艺。
上机效果
iGame GeForce RTX 3090 Kudan(九段)的灯光效果不多,但胜在精致。背板尾部的“K”以及两条灯带采用嵌入式设计,与背板的金属部分高度一致,色彩鲜艳饱和度高。
从侧面可看出复杂的散热结构
iGame GeForce RTX 3090 Kudan(九段)的混合散热系统最为精妙,从显卡侧面也能看出,与我们常见的显卡采用单鳍片散热有所不同。
三位一体混动散热
其内部采用了三层设计,贴近芯片部位依旧为核心导热的真空冰片层;我们常见的散热鳍片也采用了上下分模的不同设计,可将中间的“鳃纱”水道层严密包裹其中,形成良好的无缝风水散热;而作为水冷部分的散热核心,“鳃纱”水道内也采用了如同肺泡处的毛细血管,增大冷却液传到面积。
采用8 8 8pin供电
iGame GeForce RTX 3090 Kudan(九段)作为本带卡皇,自然是功耗大户,它采用了8 8 8pin的供电插槽,根据官方资料显示,额定功耗为370W,开启一键超频后的功耗为500W。
视频输出接口及一键超频按钮
视频输出接口采用DP1.4*3 HDMI 2.1*1的4接口设计,HDMI 2.1接口可支持单线8K的视频输出。七彩虹标志性的一键超频按钮在这张显卡上依旧得到保留,初持状态为1695MHz,与公版相同,按下后开启超频模式,Boost频率达到1860MHz。
240冷排
我们再单独来看冷排部分,iGame GeForce RTX 3090 Kudan(九段)采用了240冷排,尺寸为307×126×73mm,中部有两条风扇和一条灯光跳线。
内部4滚珠快换接头
连接显卡的水冷头可根据玩家的安装环境实现360°自由旋转,止封冷头内部采用四滚珠的快换接头,省去套丝工序,一拉一扣即可完成安装。
另外七彩虹自信的选择了此种安装方式,也是因为获得了瑞士专项研究工业快速链接系统——STAUBLI公司的技术支持,能够达到“插拔后冷却液少至无法凝结滴落”这一全新品质标准。
冷排双侧的“FOR THE TOP PLAYERS”
在冷排双侧,同样有RGB灯光,“FOR THE TOP PLAYERS”意为“只为最顶尖的玩家”,九段诚不欺我。
02 NVIDIA Ampere架构下的RTX 3090
型号上,RTX 3090作为本代的超旗舰级显卡,对标的则是上一代的TITAN型号,从下图中我们可以看到两带显卡在算力上的实力差距。
RTX 3090显卡对比 TITAN RTX显卡
相较于上一代的Turing RTX架构,NVIDIA Ampere架构在算力上有着成倍的增长,GeForce RTX 3090的着色器性能达到35.6 TFLOPS单精度性能,而搭载NVIDIA Turing架构的TITAN为16.3 TFLOPS。
iGame GeForce RTX 3090 Kudan(九段)采用了NVIDIA Ampere架构,我们首先来看一下GeForce RTX 3090的芯片信息。
完整的GA102核心
GeForce RTX 3090采用GA102核心,并且是接近完整版的GA102核心,CUDA数量达到了10496个。
完整的GA102 GPU包含7个GPC(图形处理集群)42个TPC(纹理处理集群)以及84个SM(流处理器)组成,而RTX 3090的CUDA数量是10496个,所以可以推断RTX 3090屏蔽了一组TPC,意味着只有82个SM单元,而 完整GA102核心的CUDA数量应该是10752个,这说明RTX 3090已经非常接近完整的GA102。
为了查询方便,笔者将这几款显卡的核心参数列出,可以看到GeForce RTX 3080 Ti与GeForce RTX 3090的核心参数非常接近,相差的两个SM单元,也就是1组TPC,256个CUDA。其实在实际应用中来讲差距并不是很大,最大差别是GeForce RTX 3090相比GeForce RTX 3080 Ti多了12GB的显存,这也是为什么在跑分测试上,两款显卡的分数如此接近的原因。
03 3DMARK 理论性能测试(默认频率)
首先介绍一下测试平台,为了保证此次评测能够发挥iGame GeForce RTX 3090 Kudan(九段)显卡的最佳性能,主板和CPU采用了11代桌面旗舰级配置,具体如下。
在测试成绩上,基准测试采用3DMARK,游戏性能测试使用游戏自带Benchmark,同时为了减小误差,每项测试成绩均测试3遍取平均值。
默认GPU-Z参数
首先看一下GPU-Z的参数,GeForce RTX 3090采用GA102核心,三星8nm工艺,芯片面积628平方毫米,拥有10496个CUDA,iGame GeForce RTX 3090 Kudan(九段)一键超频后的Boost频率为1860MHz,公版为1695MHz,有很大幅度提升。采用24GB GDDR6X显存,位宽为384bit,显存带宽达到了936.2 GB/s,光栅单元和纹理单元为112和328。
下面先进行的是用来衡量显卡DX11理论性能的3DMARK FS套装:FS,FSE,FSU三者分别对应显卡在1080P、2K、4K的理论性能,取显卡分数实际测试结果如下:
3D MARK FS套装测试
在针对显卡DX11性能的3DMARK FS套装测试中,iGame GeForce RTX 3090 Kudan(九段)的性能我们主要和RTX 3090公版成绩来对比,可以看到由于Boost频率达到了1860MHz,所以相对公版来说有着较大幅度的提升,FS成绩提升4%;FSE成绩提升6%;FSU成绩提升7%。
3D MARK TS套装测试
而在针对DX12环境下的Time Spy和Time Spy Extreme测试中,iGame GeForce RTX 3090 Kudan(九段)的分数平均有3%左右的提升。
3D MARK 光追测试
PortRoyal是3DMARK中专门针对光追性能的测试项,iGame GeForce RTX 3090 Kudan(九段)的成绩相较公版RTX 3090提升6%左右。
04 iGame Center软件
之所以先说iGame Center这款软件,是由于后面我们要进行超频测试,而使用iGame Center可以达到轻松快速超频的目的。
首页展示硬件基础信息
显卡超频设置
在软件第二栏,进入显卡设置选项。如果超频玩家可以手动调节左侧选项,首先功耗要拉满,核心温度不用动(因为根本到不了80℃),电压不要动(新手不建议加压超频),核心频率和显存频率可以随便调节,失败了大不了就是掉驱动重新来过。另外右侧的散热调节也不用更改,自动就好,后面你就会见识到什么叫“卡皇”。
LCD屏幕调节
第二栏左侧为LCD屏幕调节区域,安装好iGame Center后,显示屏就会默认显示勾选的5个数值,当然玩家也可自定义勾选,或者选择左右双屏显示。
显卡灯光调节
第三栏的背光调节则可以控制显卡背板的logo灯,大体选项和iGame其他系列显卡相同,不过由于我们的测试平台同时插入了iGame内存,所以想要单独调节显卡需要断开灯光同步。
05 3DMARK 理论性能测试(超频)
当然作为九段,不超频多少有些可惜,我们在iGame Center软件中选择手动超频,频率加了80MHz左右,显存频率加了100MHz左右。
手动超频后的GPU-Z参数界面(点击查看大图)
可以看到在调了显存频率后,显存带宽已经来到了1000 GB/s以上,多么恐怖的数字。当然这仍然不是极限,只不过笔者想凑个整数。
拷机稳定性测试(点击查看大图)
超频后首先要做的就是拷机测试,看看当前频率是否稳定,在显卡稳定的情况下,重新打开3DMARK,来看看分数有什么变化。
3D MARK FS套装测试
iGame GeForce RTX 3090 Kudan(九段)在超频后的成绩再次大幅提升,FS成绩相比默认频率提升3%,相比公版提升7%;FSE成绩比默频提升4%,比公版提升10%;FSU成绩比默频提升4%,比公版成绩提升11%
3D MARK TS套装测试
而在针对DX12环境下的Time Spy和Time Spy Extreme测试中,超频后iGame GeForce RTX 3090 Kudan(九段)相比默认频率均有4%左右的提升,相比公版也达到了7%左右的提升。
3D MARK 光追测试
在针对光追的PortRoyal测试中,超频后的iGame GeForce RTX 3090 Kudan(九段)相比默认频率下提升3%,相比公版提升9%。
在整体的理论性能测试中,我们看到了作为超旗舰九段的血统,在保守超频的情况下,相较公版有9%左右的性能提升。
而这并不是最令人称奇的地方,由于采用了风水混动散热,在超频后我们丝毫感受不到风扇的噪音,而温度同样有惊人的变化,下面我们来看温度与功耗的测试。
06 超频前后温度与功耗测试
一键超频后功耗测试(点击查看大图)
功耗测试中,我们选择FurMark软件进行拷机测试,功耗仅计算显卡自身。首先我们测试一键超频后的功耗,也就是1860MHz频率。作为GeForce RTX 30系旗舰显卡,iGame GeForce RTX 3090 Kudan(九段)的功耗比较大,在峰值情况下整体平均在400W左右。
此时的显卡温度为60℃左右,核心温度74℃,显存温度76℃,43%的风扇转速。
手动超频后功耗测试(点击查看大图)
在超频到1940MHz后我们再使用FurMark进行测试,功耗仅计算显卡自身,可以看到在峰值情况下整体在430W左右,如果超频至更高整卡功耗还会增加。所以如果想要拿到卡超频的用户最好配备更高瓦数电源,至少为750W以上电源。
最令人惊讶的就是各项温度数据,此时显卡平均温度为58℃左右,核心温度72℃,显存温度74℃,40%的风扇转速,超频后的温度比超频前还要低。
温度测试
最后在温度方面,由于拷机过程中偶尔会上到59℃,笔者列出了最高值,但即使这样,结果也是惊人的。在超频后水冷的散热效率明显加强,这也导致了风扇转速反而低了。虽然原理浅显易懂,但看到这种结果,仍会给人感觉到似乎是触发了九段的某种觉醒开关。最主要的是,不管在超频前后,iGame GeForce RTX 3090 Kudan(九段)全程没有一点噪音。
07 游戏性能测试(一键超频)
在游戏性能测试中,我们选择了《刺客信条:英灵殿》、《无主之地》、《德军总部新血脉》,国产游戏《光明记忆:无限》、《边境》的benchmark跑分软件。同时为了观察几款旗舰产品的细微跑分差距,增加了GeForce RTX 3080 Ti的游戏测试,去掉了GeForce RTX 2080 Ti的游戏跑分。
另外在游戏测试中,由于显卡驱动的版本更新和游戏更新非常影响游戏帧数,所有benchmark跑分成绩均以本次成绩为准。
下面的游戏测试中我们仍以显卡一键超频后的1860MHz来进行测试,毕竟超频后的数值并不属于典型值。
《刺客信条:英灵殿》游戏测试
在刺客信条《刺客信条:英灵殿》中,在实测中我们发现如果你想买RTX 3090作为一张游戏卡来说,它的性价比确实不如RTX 3080 Ti来的划算,虽然在高分辨率下确有提升,但是价格也在那摆着。
《光明记忆:无限》游戏测试
《光明记忆:无限》是由飞燕群岛工作室开发的《光明记忆》新系列,正式版已经在steam发售只要48元,属于小品级游戏中的大制作。
另外我们在测试的时候由于无法关闭光追选项,故所有测试成绩均为“RTX 最高/DLSS 质量”模式下进行。这个演示demo涵盖了大量光追元素,大部分显卡的跑分成绩都偏低,即使是iGame GeForce RTX 3090 Kudan(九段)在4K成绩下也只有42帧。
《无主之地3》游戏测试
《无主之地3》是一款采用了卡通渲染风格的游戏。在这款游戏中iGame GeForce RTX 3090 Kudan(九段)的分数差距不大。
《德军总部新血脉》游戏测试
《德军总部新血脉》优化较好,大多数显卡都能在4K分辨率下流畅游戏,而iGame GeForce RTX 3090 Kudan(九段)更是能打到185帧的超高电竞水准。
《边境》游戏测试
在另外一款国产游戏《边境》的跑分软件中,情况基本与《光明记忆:无限》相同,测试条件均在“RTX最高/DLSS质量”下进行。
08 专业软件测试
除了光线追踪的强化,NVIDIA Ampere架构的Tensor Core也得到了极大地加强,在第三代Tensor Core中,NVIDIA引入了稀疏化加速,可自动识别并消除不太重要的DNN(深度神经网络)权重,同时依然能保持不错的精度。首先原始的密集矩阵会经过训练,删除掉稀疏矩阵,再经过训练稀疏矩阵,从而实现稀疏优化,进而提高Tensor Core的性能。
同时,显卡的一个重要指标是显存容量和位宽,显存位宽越大,表示单位时间显卡能处理的数据的越多,RTX 3090拥有384bit 位宽,带宽则为 936 GB/s,以及24GB大显存,这都为内容创作提供了更好地助力。
KeyShot 9测试
KeyShot 意为“The Key to Amazing Shots”,是一个互动性的光线追踪与全域光渲染程序,无需复杂的设定即可产生相片般真实的 3D 渲染影像。
KeyShot 9 1500×1125素材渲染对比(点击查看大图)
在KeyShot 9测试中,使用CPU的渲染时间为14分半,由于这款软件的特点就是能够为模型快速的打造出照片水准的3D效果影像,同时还支持动画操作,所以对GPU的依赖性较强。在使用iGame GeForce RTX 3090 Kudan(九段)渲染同分辨率同采样率的情况下仅用时12.48秒,差距非常明显。
KeyShot 9 8K素材渲染对比(点击查看大图)
如果上面低分辨率的渲染时间感觉差距不大,上面笔者将素材尺寸调整为7680×5760分辨率,采样率不变再次进行渲染。可以看到这次iGame GeForce RTX 3090 Kudan(九段)的渲染用时增加到7分16秒钟,而使用CPU渲染10%的进度就用了35分钟,如果将整幅图渲染完成,则至少需要5.8小时。
渲染8K素材占用了17GB显存(点击查看大图)
另外在渲染高分辨率素材时,RTX 3090的24GB超大显存就发挥了作用,我们可以看到在渲染8K分辨率图像时,占用了17GB的显存空间,而如果使用GPU渲染显存溢出的话就会报错,导致软件崩溃。
DaVinci(达芬奇)测试
DaVinci(达芬奇)是世界上专业8K编辑的唯一解决方案,集成颜色校正,视觉效果,音频编辑在一个软件中,我们测试的设置条件是,在导入8K素材后,使用运动模糊滑块将运动模糊设置改为50,用以验证不同规格的显卡在DaVinci(达芬奇)后期测试的性能表现。
开启动态模糊(点击查看大图)
在使用了iGame GeForce RTX 3090 Kudan(九段)情况下可以在DaVinci可以进行8K素材的编辑,而RTX 3080会因为显存不够而无法预览8K素材。
RTX 3080无法预览(点击查看大图)
这是因为在分辨率越高的情况下,实时预览对显卡显存的要求非常高,而RTX 3080采用10GB显存显然无法满足要求。
通过测试我们可以发现,在8K素材加上强度50的运动模糊测试中,iGame GeForce RTX 3090 Kudan(九段)显卡可以实时流畅预览,而RTX 3080无法预览,这也表明RTX 3090 24G大显存为内容创
Blender测试
Blender是一个免费开放源码的3D创作套件。它支持整个三维编辑-建模,索具,动画,模拟 渲染,合成,运动跟踪,视频编辑和2D动画编辑。
这个软件比较“坑人”的地方就是,渲染窗口内无法切换渲染硬件,在窗口中打开一个新的GPU渲染页面,当用户忘记切换时很容易导致显存占用超过10 GB,这将消耗RTX 3080所有可用GPU显存。这可能导致由于中止渲染而损失的时间,甚至可能损失全部工程。
设置条件(点击查看大图)
设置条件:从主菜单中,选择 "编辑">>"首选项",然后在 "首选项 "面板中选择 "系统 "部分。选择 OptiX GPU 渲染,再返回主视口,打开渲染设置,开始交互式视口渲染。
CPU渲染测试 最终用时为6分26秒(点击查看大图)
RTX 2080 渲染测试 最终用时为57.69秒(点击查看大图)
RTX 3080 渲染测试 最终成绩为34.45秒(点击查看大图)
iGame GeForce RTX 3090 Kudan(九段) 最终成绩为29.97秒(点击查看大图)
使用iGame GeForce RTX 3090 Kudan(九段)显卡进行Blender测试中仅使用29.97秒,同比于RTX 3080提升了15%。
不过在测试中,RTX 3080和RTX 2080偶尔会出现报错的情况,因为在渲染的时候,有时候渲染数据会超过RTX 3080的10GB显存容量,就相当于以前游戏常见的爆显存一样,但不同于游戏的是,爆显存在Blender中会导致软件崩溃,所以在内容创作软件还是RTX 3090的大显存显卡更稳定一些。
09 摒弃以繁为美 推崇以简至上
GeForce RTX 3090作为GeForce RTX 30系的旗舰级显卡,无论是参数还是实际性能都是目前NVIDIA桌面级显卡顶尖的存在,而iGame GeForce RTX 3090 Kudan(九段)在一键超频情况下相比公版综合提升4%性能,在保守超频的情况下相比公版综合提升9%性能,最主要的是这9%的性能并不以增大噪音为代价。
外观方面,如果见过iGame GeForce RTX 2080 Ti 九段的玩家,一定会觉得眼熟,其实本次的iGame GeForce RTX 3090 Kudan(九段),我认为是在上一代基础上进行了化繁为简的设计。
iGame GeForce RTX 2080 Ti 九段
iGame GeForce RTX 3090 Kudan(九段)
在GeForce RTX 2080 Ti的年代,人们还喜欢厚重和强装饰元素的产品来彰显个性,而现如今人们则更喜欢简约且有设计感的产品。化繁为简看起来是做减法,但设计起来却更有难度。
还记得九段初期的产品,各种DIY配件简直比产品本身还耀眼,恨不得教你如何从沙子搓出GPU。但现在不止是显卡,大部分硬件都是怎么方便怎么来。不得不承认,这也是DIY玩家普遍的一种“退化”。
iGame GeForce RTX 3090 Kudan(九段)
作为本代的超旗舰产品,性能不用过多佐证,如果还有这款显卡玩不起来的游戏,那一定是游戏的问题。同时24GB大显存,也保证了任何内容创作软件绝对的稳定性。
当然,iGame GeForce RTX 3090 Kudan(九段)这款高达30000元售价的显卡并不具备性价比,正如卡身上印的那句话“FOR THE TOP PLAYERS”,它只为少数的顶尖玩家,而购买显卡后独立的售后团队,也证明了这一点。
iGame GeForce RTX 3090 Kudan(九段)
另外,这款高达3万元的iGame GeForce RTX 3090 Kudan(九段)属于限量款产品,数量稀有,外加旅行箱上的编号外,这是属于你独一无二的显卡。
10 附录1-光追及DLSS效果
上面我们测试了部分游戏的光追和DLSS性能表现,这些效果具体在游戏中是什么表现,下边笔者选择了两款游戏给大家展示一下。
《光明记忆:无限》RTX ON(点击查看大图)
《光明记忆:无限》RTX OFF(点击查看大图)
《光明记忆:无限》温泉场景中的光追效果是最为耗费显卡性能的。不难发现,最大的变化来自水中的倒影,而这一组倒影的计算难度非常高,由于并不是平静水面,所以要首先要考虑光线在水面的变化,其次与岸边鹅卵石的光线折射效果,最后则是综合前两种效果,将光线照射在水池底部。
《赛博朋克2077》RTX ON(点击查看大图)
《赛博朋克2077》RTX OFF(点击查看大图)
在《赛博朋克2077》中,光追效果随处可见,而在游戏中也运用到了不同的光追效果,包括最常见的光追反射、阴影,还有环境光遮蔽、漫反射照明以及全局光照等比较高级的效果。
RTX ON(点击图片查看大图)
RTX OFF(点击图片查看大图)
在网游《逆水寒》中,由于光追效果正处于试验阶段,并没有如宣传片一样的水面反射。但画面整体的阴影更加真实,如头顶树木的阴影,以及水面上荷叶的效果。而且由于光追效果较少,在打开该功能后帧数并没有明显下降。
《堡垒之夜》RTX ON(点击查看大图)
《堡垒之夜》RTX OFF(点击查看大图)
堡垒之夜的光追效果还是比较明显的,其中加入了反射、全局照明和路径追踪等效果。卡车车身上的反射较为明显,角色身上的环境光在打开光追后更为写实,另外仔细看的话远处建筑物的玻璃同样有光线的反射,整体画质改善非常明显。
《魔兽世界9.0》RTX ON(点击查看大图)
《魔兽世界9.0》RTX OFF(点击查看大图)
《魔兽世界9.0》同样作为一款卡通渲染的网游来说,魔兽的年代更加久远,此次加入光追效果在整体视觉上没有堡垒之夜明显。不过如远处的树木阴影,以及近处石台下方的阴影都比较明显。
《控制》RTX ON(点击查看大图)
《控制》RTX OFF(点击查看大图)
《控制》这款游戏所采用的引擎物理效果非常出色,同时光追开关的对比也是肉眼可见的明显。包括玻璃上的人物反光,远处地面的植物反光都比较清晰,同时打开光追后屋顶处的明暗对比也更加明显。
DLSS的对比测试中,首先还是《光明记忆:无限》在这一组对比中,在画面差距上,从DLSS关到DLSS性能依旧看不出什么变化,但是在超级性能模式中,墙壁的清晰度以及轮廓都有所下降。
当然总的来说,尽管DLSS贡献了非常大的功劳,但可以看得出《光明记忆:无限》在优化方面下了很大功夫,这对于靠一人主导的游戏来说难能可贵。
《赛博朋克2077》DLSS模式对比
《赛博朋克2077》这款游戏中,以2K/RTX ON/DLSS关闭 原生画质下作为标准,在打开DLSS质量模式后可以看到整体画面几乎没有任何变化,广告牌的字样边缘依然很清晰。在DLSS平衡和DLSS性能模式中依然有着不错的状态,整体相较原生画质并无二致。
《逆水寒》DLSS模式对比
画质说明
在《逆水寒》的DLSS测试中,我们将画面设置为4K分辨率,画质为预设最高。通过关闭、快速、超级性能,3种不同模式来进行帧数以及画面的对比。
首先在关闭DLSS中,游戏帧数为26帧原生画质,打开DLSS快速模式后为41帧,而打开DLSS超级性能模式后为57帧。通过放大图片不难发现原生画质和DLSS快速模式的区别很小,而DLSS超级性能模式中角色背后的装饰会变模糊,以及木条箱的纹理边界会有较明显变化。但帧数提升却非常明显。
《永劫无间》DLSS模式对比
在《永劫无间》的DLSS对比中,原生画质大家可以注意角色发带的编制质感,每一根发丝边缘都较为清晰,同时肩部的服装花纹也有较为明显的凹凸感。在DLSS打开后,由于其工作原理就是缩放后,再由AI算法放大进行边缘重建,所以在质量模式中,发丝就会丢失部分细节,但如果不细看很难发现,同时发带的细节也保留的相当完好。
而在DLSS性能模式中,头发的质感则更差一些,并且发带的编织感有明显下降,另外腰间的配置边缘也会变模糊。最后在DLSS超级性能模式中,角色整体则会较糊,无论是头发还是服饰,所以如果不是非常追求高帧数的玩家,不建议开启DLSS超级性能模式。
11 附录2-Ampere新特性
好的硬件没有软件的加持,相当于空有长柄没有枪头,想要发挥十成威力则必须软硬搭配,反之亦然。此次随着发布会共同推出的还有以下几项非常值得大家关注。
NVIDIA Reflex
以往我们关注延迟大多从显示器上了解到几毫秒极速响应,但那只是作为最终端的显示输出效果,你是否想过从系统内部到实际看到的画面有多大延迟?
NVIDIA Reflex
在20系显卡中NVIDIA反复提及的“帧能赢”,在30系显卡中也做了更进一步的突破,除了NVIDIA将推出自己的电竞显示器NVIDIA 360Hz G-SYNC ESPORTS,还有NVIDIA Reflex技术。
以往如果想测量系统延迟需要高速相机以及定制的LED鼠标电路。而使用带有NVIDIA Reflex技术的显示器将内置精确的延迟分析工具,可在CPU和GPU中优化渲染管道,极大减少延迟时间,将系统延迟整体降低至30ms以下。不过就像图中所示,为此你需要一个支持反射延迟分析的鼠标。
NVIDIA Broadcast
NVIDIA Broadcast是一款易用且专业的直播软件,它的强大之处就在于主播不再需要任何的背景布置,只需要一个普通的摄像头和一张GeForce RTX系列的显卡即可。
宠物派对直播
这款软件可以让你杂乱无章的房间立即变成直播间,其内置了音频降噪、背景虚化、虚拟背景、头部追踪等功能。NVIDIA Broadcast的工作原理是利用AI算法通过DGX超级计算机深度学习而来。
NVENC编码
同时RTX 30系显卡拥有目前最好的硬件解码器,大部分用户的电脑在直播时打开OBS推流后CPU占用会直接飙升到50%左右,而基于GPU的NVENC解码可以极大地减轻CPU负担。
NVIDIA Studio
对于内容创
NVIDIA Studio
NVIDIA Studio驱动经过更新与优化,对于最新版本的Adobe系列软件支持更为稳定,同时附带更出彩的创作功能。利用NVIDIA CUDA技术,GPU加速特效可实现更快的实时视频编辑并加速渲染输出,并让原本只能进行软件编码输出的视频轻松得到硬件的支持。另外在AI计算方面的优势,包括自动标记片段、特效追踪和人脸识别等功能,都有显著的速度提升。
以GPU渲染为14.98秒 而CPU渲染为11分钟
当然NVIDIA Studio的加速创作绝不止Adobe一家,DaVinci、Keyshot、Blender、D5等专业软件中都有非常亮眼的表现。不仅能提供强大且稳定的运行环境,更能以GPU加速,有效提升创作效率。
(7817871)
学习3dmax动画渲染的电脑配置?附配置价格!
前面的文章中,我们聊了关于学习C4D的电脑配置。
也有不少读者朋友反馈用的是3dmax建模软件。
今天,我们看看3dmax相关的配置,做个参考!
处理器:多核心、高速处理器,例如 Intel Core i7 或AMD Ryzen 7。
显卡: 专业级别的显卡,例如 NVIDIA Quadro 或AMD Radeon Pro.
内存:至少16GB RAM,但最好是 32GB 或更多
存储: SSD 或NVMe 固态硬盘,以便更快地读取和写入文件
操作系统:Windows 10 64位版本。
其他:有条件的情况下,建议使用多个显示器以提高工作效率
这些配置需要的花费如下:
处理器: Intel Core i7 或AMD Ryzen 7,价格从¥2000 到¥3500不等.
显卡: NVIDIA Quadro 或AMD Radeon Pro,价格从¥3500 到¥14000不等
内存:16GB RAM,价格从¥500 到¥1000 不等,
32GB 或更多的 RAM 可能需要更高的花费。
存储: 256GB 或更大的 SSD 或NVMe
固态硬盘价格从¥300 到¥1300不等
操作系统: Windows 10 64位版本的价格约为¥900 左右。
有一点需要注意的是:
一般渲染项目时,时间是特别的久,需要考虑到渲染时的功率以及散热的问题。
如果项目长时间进行渲染任务,需要确保电脑能够承受负载。
可以考虑选择高级的散热系统来确保电脑可以在高负荷下保存稳定的渲染。
如果本地电脑配置不高的朋友们。
可以考虑拿到渲染101云渲染平台去渲染。
128g的服务器,不用担心渲染中崩掉内存,意外停电的情况发生。
当然,你需要支付对应的渲染费来完成渲染。
对应的,你可以节约出渲染的时间更好地给自己投资。
注册101使用渲染码1888可获得200的测试金,给大家争取拿来练手熟悉。
不在本地渲染的朋友可以考虑使用云渲染,不耽搁项目的交付。
希望对你有所帮助!
技嘉AERO 17 HDR XB设计师笔记本Blender性能测试:让3D动画制作的光影飞舞
3D动画或者3D建模这些字眼放在过去,对于大多数人的第一印象,都是非常高端,遥不可及的存在,这类工作不仅对于硬件有着高不可攀的要求,而行业内的软件成本,也不是个人或者小团队能承受的,但近年Blender这个开源3D动画软件的兴起,其上手友好和免费使用的特性,很好地解决了软件方面的阻碍,让普通的学生和爱好者,也能开始接触和进入到这个领域,至于在硬件方面,NVIDIA选择与Blender深度合作,利用RTX GPU来帮助大家加速软件的渲染速度。可以说,现在你只需一台RTX Studio笔记本,就能开始自己的3D动画制作生涯了。
充分利用RTX技术的Blender
与那些3D动画制作软件的巨头级软件,牵一发动全身的谨慎迭代更新不同,Blender凭借其开源的灵活优势,软件本身在几年时间内便获得了快速发展,特别是对用户非常有实用意义的硬件支持上,Blender很早就支持了NVIDIA的CUDA通用计算技术,相比传统的CPU渲染,可以极大提高3D模型的渲染速度,而到了基于Turing架构的RTX系列GPU上,NVIDIA更是选择与Blender深入合作,共同把充分利用到光线追踪技术的OptiX API,做进了Cycles渲染器的后端,使得在搭配RTX系列GPU工作时,渲染速度会有比CUDA还要更快的表现。
可能对于不少读者,看到这里已经有点不知所云了,所以有必要先简单介绍下3D动画制作的工作流。其实这类工作都可以归为两个主要阶段,首先是画3D模型,这个阶段大多是在立体空间内的线、面绘制,所以对电脑硬件需求相对是比较低的,主要用到的是CPU性能,目前主流的6核、8核CPU都已经可以很好应付,而完成3D建模后,会加上贴图、材质面和光照效果,然后通过渲染器(render)导出我们常见到的,那些栩栩如生的3D渲染图或者动画,在这个阶段就需要高性能的硬件,才能更好更快地完成渲染工作了。
而在渲染器方面,又分为CPU和GPU渲染引擎,过去CPU渲染曾是3D动画软件的最主流选择,这依赖超多核心数量的CPU来工作,但近年GPU渲染在3D动画软件中也是越来越重要了,比如Autodesk的Arnold,以及Redshift渲染器,都是完整支持使用GPU来做渲染的,特别是NVIDIA的RTX系列GPU本身支持硬件级的光线追踪能力,在处理与光照效果相关的渲染时会非常高效。
至于在最新版Blender里面,做渲染工作的主要有EEVEE和Cycles,这两个渲染器都可以支持GPU渲染,当中Cycles便是前文所述的那个渲染器,它有着NVIDIA的深度支持,能充分发挥RTX GPU的硬件性能,而在目前基于Optix API的最新版Cycles渲染器中,已经支持头发、体积着色器和动态模糊等在内原有的GPU渲染特性。
技嘉AERO 17 HDR XB笔记本能否驾驭Blender?
由于有着原生级别的软硬件结合,所以NVIDIA的GPU在Blender就会有得天独厚的优势,而在目前笔记本市场上,有专门面向内容创作用户的RTX Studio笔记本,搭载了NVIDIA RTX系列GPU,所以我们这次就来看看这类笔记本在Blender里面,实际渲染性能表现是怎样的。
为此我们选择了一台来自技嘉的AERO 17 HDR XB设计师笔记本,它配备17.3英寸4K分辨率的超窄边框屏幕,在22mm厚度的机身里面,塞入了NVIDIA RTX 2070 SUPER with Max-Q GPU,以及Intel Core i7-10875H八核CPU在的高规格硬件,非常适合用于做内容创作,也通过了NVIDIA RTX Studio认证,有关它的更多详细介绍和评测,可以参阅我们另外一篇文章《技嘉AERO 17 HDR XB设计师笔记本评测:虚拟主播的加力推进器》。
产品规格参数
这次Blender性能测试部分主要分为两个,首先是Blender官方的跑分软件Open data Benchmark,带有多个不同模型、场景,能很好地反映Blender对硬件的支持和需求情况,其实大家也可以从网上下载该benchmark来测试自己现有平台,再对比我们这里的成绩,可以有更直接的体会。
当然跑分benchmark只是一部分考验,到真实创作使用上,还是有所不同的,所以为了更好地结合3D动画从业者们的实际情况,我们联系了国内专注于Blender学习与交流的网站:斑斓中国社区(Blendercn.org),为我们提供了两个他们实际制作的Blender项目,用作第二部分的性能测试。
Open data Benchmark
目前Open data Benchmark最新版已经带有与Blender正式版相同的2.83,在技嘉AERO 17 HDR XB笔记本上面,可选基于OptiX、CUDA运算的两种GPU渲染,以及传统的CPU运算,我们这次测试采用了命令行方式运行,以确保最好的运行兼容性和稳定性,而AERO 17 HDR XB笔记本设置为CPU和GPU到最大性能等级,散热系统设为游戏模式,并安装最新RTX Studio驱动。
这个测试的结果并没有什么意外,GPU渲染的速度完全碾压了CPU渲染,这与Blender官方给出成绩情况是类似的,而且同样GPU渲染下,采用OptiX设置相比CUDA也有着数倍的差距,可见RTX 2070 SUPER with Max-Q这样支持光线追踪的GPU,会在Blender更有性能优势,只有在不带有RT Cores、不支持OptiX的GTX 16系列GPU上,才会采用CUDA的设置。
实际项目渲染测试
不同于benchmark只是无情地跑个渲染成绩给大家看,在Blender实际工作里面,渲染其实还主要分为了视口渲染(Viewport render)和最终渲染(F12 render)两种,前者用于可以实时预览建模的大致渲染效果,所以为追求速度,采用了动态BVH(层次包围盒),还有一些动态模糊、图块渲染在内的设置会被忽略,而最终渲染就是把当前帧导出成品图片了,它会把工程里面的所有效果和设置全部都渲染出来,所以耗时要更久,对硬件的要求也更高一些。
我们在这部分的渲染测试用到了两个工程文件:一个为由斑斓中国原创组制作的NVIDIA logo项目,项目添加了很多光照效果,而软件测试用了最新的Blender 2.83稳定版;另外一个由斑斓中国古生物组-FXZT制作的有多种恐龙摆pose的3D模型场景,这个因为用到了更新的OptiX功能,所以测试需要Blender 2.90每日更新版,这个项目的复杂程度其实也相较更高。
视口渲染
一些对3D动画软件有所了解的读者,可能会知道在其它渲染器里面,虽然GPU渲染的速度很快,但会带来明显的噪点,需要提高samples参数,并加上降噪(denoise)处理,那么在最新版的Blender里面,它支持了名为OptiX AI-Accelerated的降噪功能,这利用到NVIDIA RTX GPU的Tensor Cores,通过机器学习锻炼的AI来提高渲染画质,而且在速度上比传统降噪方式也要更快。
现有Blender的视口渲染和最终渲染,都是可以开启OptiX AI-Accelerated降噪,所以我们可以来看看Blender在Cycles渲染器设置成GPU渲染后,视口渲染的响应反馈,以及对比分别在CPU和GPU渲染下,加入降噪后的最终渲染图画质。
Cycles渲染器在设置OptiX成GPU渲染后,把Shading工作区切换到视口渲染模式,可以看到灰模的材质、光照以及反光效果,基本都会在2-3秒就渲染出来大致形态,即使在场景的三维空间拖动模型,让观看的镜头视角改变,GPU渲染的响应也非常快速,只需等一阵子就完成初步渲染,几乎能做到实时的预览,但在CPU设置下,引擎的渲染速度就变得非常缓慢,需要耗费数分钟的时间才能看到大致的模型外貌。
通过采集不同设备设置下视口渲染的整个处理过程,在计算和对比各自耗费的时间后,可以看到基于OptiX的GPU渲染,完成整个视口渲染的耗时,要比用CPU来工作快很多,最高去到5倍的差距,验证了上述的在拖动模型进行变换操作时,GPU渲染响应更快速,能做到接近实时预览的表现,而在CPU渲染下,即使想预览建模的基本渲染画面,也要等待约26秒左右的时间(在恐龙项目内)。
最终渲染
通过对比两个项目各自不同设置下的四张最终渲染图,可以看到GPU渲染的画质是非常不错的,而且有点意外的是,CPU渲染在Blender里面出来的最终渲染图,甚至是不如GPU渲染的来得好看,即便不加降噪,GPU渲染也有不错的画面纯净度,在加上降噪后就观感更好,但CPU渲染却不太满意,特别恐龙那个项目,直接CPU渲染出来的图片同样有较明显的噪点,也要加上降噪才能消除掉一些画面杂质。当然CPU渲染还是有一点优势在于,它给到的画面清晰度会稍微好一些。
在Blender的Cycles渲染器设备支持可谓全面和灵活了,它可以设置CPU、OptiX GPU、CUDA GPU和OpenCL GPU,甚至可以支持多卡互联的渲染,可玩性还是挺高的,但考虑到实际应用环境,这里最终渲染测试只选择了CPU、OptiX GPU、CUDA GPU,以及各自加入了AI降噪后的渲染耗时。
最终渲染速度的成绩与benchmark的情况基本一致,GPU渲染要大幅快于CPU渲染,而OptiX又会比CUDA还要更快,采用RTX系列GPU真的可以省下非常多的时间成本,另外还可以看到的是,即使加上AI降噪,也并不会带来更长的渲染耗时,这应该是因为这个AI功能,用到了RTX系列GPU核心内独立的Tensor Cores来做的,所以不影响GPU的渲染运算工作。
测试总结
可见无论在Open data Benchmark,还是实际的工程项目里面,得益于Blender Cycles渲染器对NVIDIA RTX系列GPU的极佳优化,让技嘉AERO 17 HDR XB这样高阶RTX Studio笔记本,可以完全有能力胜任3D动画软件渲染工作,它即可适用于那些准备在Blender做商业项目的专业用户,又对于希望学习和入门Blender的学生、新手,都一体式解决了他们在硬件方面的需求。
当然技嘉AERO 17 HDR XB主要面向的是高端专业设计用户,所以在国内的售价比较高,但如今市面上的RTX Studio笔记本还是比较多了,大家可以根据自身预算和使用强度作选择,只要认准RTX系列GPU就好,因为它们在Blender的表现实在太高效了,这也让我们期待NVIDIA与Blender还会有更多的深入合作,利用到GPU硬件特性,把这个3D动画软件做得更好。
访谈斑斓中国
最后,因为我们网站本身是做电脑硬件评测,在3D动画制作方面多少会显得班门弄斧,不敢轻言阔论,所以我们觉得让实际的从业人员也来分享一些故事,会更为贴切,因此我们与斑斓中国社区的裴哥作了些相关的交流,一同聊聊Blender目前在国内的发展状况,也帮助大家更好地了解NVIDIA RTX GPU对这个3D动画软件的支持程度。
(1)Blender目前在国内的接受程度怎样?
问:Blender作为一个开源的3D动画制作软件,它目前在国内的接受程度怎样? 斑斓中国社区是目前国内少有专注与Blender交流的网站,目前用户主要群体都有哪些,他们又主要在用怎样的硬件进行动画制作呢?
答:从个人用户角度来说,在不考虑工具软件和数据资产知识产权保护的前提下,很多用户首先考虑的是一个工具软件和自己已经在使用的工具软件对比,看看哪个更加顺手,很遗憾的是在几年前Blender处于下风,没有积累到太多的用户。
不过在Blender2.8以后,同样的前提条件下,Blender在效率、集成度、易用性、所见即所得的实时性上超过了很多用户手里正在使用的软件,这一两年Blender的认知度在迅猛的提高,在认知度提高的先决条件下,学习和采用Blender的用户也在几何级的增长,就看B站那么多人开了那么多的基础班,依然还在供不应求,跟图形沾边的行业的用户都在他们的头部用户的带领下,开始接触到Blender,然后开始学习和采用Blender。
特别是最近半年多,很多人都困在了家中,他们在这段时间从听说Blender转变到接触Blender再到接受Blender。社区在B站的几位成员开的频道也从前两年的几百个关注达到现在的两三万的关注量,可能可以从这里窥斑见豹找到一些迹象说明国内用Blender的人多了起来。
很多文创企业因为自身不需要在3D动画这一块形成核心竞争力,因为他们的盈利模式并没有高度依赖于软硬件技术革新,也不需要软件去节省综合成本,现阶段我们还是以企业内的技术或者艺术总监级用户是否有能力掌握Blender并将其应用到工作流程中作为判断标准。因为这部分用户有很强的技术路径依赖,以及很多利益捆绑,所以,社区只能跟已经具备相当能力的部分关键用户进行连接。更多的面向企业进行推广的事情,社区不具备相应的资源去劝说和实施。
我们对Blender用户的侧写是:一切有可视化需求的用户群体。繁星点点,散落在各行各业。远看都是闪闪发光,近看大家的业务差距都隔着十万八千里。这也是社区需要非常多的知识储备去应对如此需求不一致的用户群体,耗费了不少的人力和资源,看着成效不够大的原因。
现在的社区活跃用户已经积累了大量Blender知识和技能,在他们各自行业里对Blender形成了依赖,他们的很多解决自身行业问题的方案都是基于Blender来做的。因为Blender涉足到各种可视化和跟图形想关的行当,最近一年的超快速功能更新,让Blender在国内扩展了不少的用户群体:比如游戏制作里面的概念和原画设计这个领域有非常多的Blender新用户:Blender的实时渲染引擎和可以在三维中绘制立体图像的蜡笔工具以及很多辅助插件可以相当迅速的帮助他们完成项目。
大众化的影视广告业有很多专业的Blender用户,MC的同人动画制作有很多年纪很小的用户,珠宝设计利用到Blender的快速出图功能有的用户只用了几个月就建立起了对行业里其他软件用户的绝对优势,电商的各自产品图样的快速渲染,考古学中的场景还原和生物复原,建筑行业的BIM可视化快速展现,室内外场景基于RTX的快速渲染等,大家都在积极探索Blender如何应对各自行业的可视化需求。
Blender从2.8版本开始,就把硬件的支持时限从八年减少到了五年(从软件发布向前推的年份数),因为很多新软件功能依附于较新的硬件配置。少部分已经更新到RTX显卡下,大部分的硬件还停留在四五年前的水平。不过因为Blender有一个靠图形API输出渲染图像的渲染引擎Blender EEVEE,生成动画这个功能大部分用户在没有硬件升级的情况下也还算过得去。
很多Blender EEVEE的用户在希望这个引擎支持vulkan这个新的图形API,这样的软件升级也会带来很多的硬件升级需求。根据已经将显卡升级到RTX的用户反馈,基于RTX的Blender cycles渲染预览速度已经跟实时的Blender EEVEE不相上下,而且有更好的光影视觉反馈。
(2)RTX技术的GPU渲染在Blender做得怎样?
问:基于RTX技术的GPU渲染带来了光线追踪技术,这在现有版本Blender里面的利用和优化又做得怎样?现有Blender已经支持了利用RTX GPU去做AI denoise降噪,那在3D动画制作中,还有其它哪些方面可以利用上AI、机器学习的特性?
答:2019年SIGGRAPH上,Blender的掌门人ton跟NVIDIA CEO JHH进行了一次亲密的双边会谈,这次会面是非常有建设性的,JHH宣布将optix的授权协议跟Blender这种开源软件的协议相适配,也就是将这些先进的技术输出和集成到Blender中,供广大的Blender用户使用。
在Blender开发团队还不能太好驾驭optix的情况下,JHH让NVIDIA的开发人员PATRICK MOURS对Blender的cycles进行改造,并开源了相关的实现。现在Blender中的RTX的实现和优化是原厂级的,就在最近的2.90的版本更新中,还将刚在optix SDK7.5中的出现的毛发曲线实现放进了Blender。相信一些未完成的RTX功能实现和技术转移将在后续的Blender版本中逐渐完成。
对使用Blender的用户,我们社区已经部署了RTX显卡的用户一致推荐去购买一张RTX显卡或搭载RTX GPU的设计师笔记本来体验这种原厂级的丝滑支持,以及设计师PC,设计师笔记本等多种类设备支持为Blender用户带来更灵活的选择性以适应不同工作场景。
3D动画是计算机图形学在应用方面的集大成者,有很多方面可能会用到AI,机器学习,数不胜数,因为我们获得的知识和信息不是很全面、可能造成眼界比较狭隘,不过我们能够看到的例子也可以举出一些,如下:以前用动作捕捉来进行动画制作,最近几年的论文都在通过深度学习和相关指令,让人形角色和其他动画角色自己跟虚拟场景进行交互,再录制成为动画,并作为数字资产供后续流程的动作控制使用。
直接通过识别照片中物体或者通过单摄像头识别各种物体再生成三维物体的AI 机器学习技术也在发展,现阶段这方面的技术可以参与到动画制作的前期策划中,作为各种简单的数字资产制作的补充技术。未来在硬件的不断发展完善下,这些技术会进一步应用到动画制作的流程当中。
通过AI计算,减少流体和烟雾在细节上的计算也是比较新的研究课题,最近一两年这片领域也开始有人在进行研究,也许不远的将来,在烟雾流体特效的模拟和渲染上,我们也能够看到成百上千倍的提速。
如果还要讲得深远一些,可能这幅图可以很直观的理解以后的AI和机器学习技术能怎么做。
3D动画或者3D建模这些字眼放在过去,对于大多数人的第一印象,都是非常高端,遥不可及的存在,这类工作不仅对于硬件有着高不可攀的要求,而行业内的软件成本,也不是个人或者小团队能承受的,但近年Blender这个开源3D动画软件的兴起,其上手友好和免费使用的特性,很好地解决了软件方面的阻碍,让普通的学生和爱好者,也能开始接触和进入到这个领域,至于在硬件方面,NVIDIA选择与Blender深度合作,利用RTX GPU来帮助大家加速软件的渲染速度。可以说,现在你只需一台RTX Studio笔记本,就能开始自己的3D动画制作生涯了。
充分利用RTX技术的Blender
与那些3D动画制作软件的巨头级软件,牵一发动全身的谨慎迭代更新不同,Blender凭借其开源的灵活优势,软件本身在几年时间内便获得了快速发展,特别是对用户非常有实用意义的硬件支持上,Blender很早就支持了NVIDIA的CUDA通用计算技术,相比传统的CPU渲染,可以极大提高3D模型的渲染速度,而到了基于Turing架构的RTX系列GPU上,NVIDIA更是选择与Blender深入合作,共同把充分利用到光线追踪技术的OptiX API,做进了Cycles渲染器的后端,使得在搭配RTX系列GPU工作时,渲染速度会有比CUDA还要更快的表现。
可能对于不少读者,看到这里已经有点不知所云了,所以有必要先简单介绍下3D动画制作的工作流。其实这类工作都可以归为两个主要阶段,首先是画3D模型,这个阶段大多是在立体空间内的线、面绘制,所以对电脑硬件需求相对是比较低的,主要用到的是CPU性能,目前主流的6核、8核CPU都已经可以很好应付,而完成3D建模后,会加上贴图、材质面和光照效果,然后通过渲染器(render)导出我们常见到的,那些栩栩如生的3D渲染图或者动画,在这个阶段就需要高性能的硬件,才能更好更快地完成渲染工作了。
而在渲染器方面,又分为CPU和GPU渲染引擎,过去CPU渲染曾是3D动画软件的最主流选择,这依赖超多核心数量的CPU来工作,但近年GPU渲染在3D动画软件中也是越来越重要了,比如Autodesk的Arnold,以及Redshift渲染器,都是完整支持使用GPU来做渲染的,特别是NVIDIA的RTX系列GPU本身支持硬件级的光线追踪能力,在处理与光照效果相关的渲染时会非常高效。
至于在最新版Blender里面,做渲染工作的主要有EEVEE和Cycles,这两个渲染器都可以支持GPU渲染,当中Cycles便是前文所述的那个渲染器,它有着NVIDIA的深度支持,能充分发挥RTX GPU的硬件性能,而在目前基于Optix API的最新版Cycles渲染器中,已经支持头发、体积着色器和动态模糊等在内原有的GPU渲染特性。
技嘉AERO 17 HDR XB笔记本能否驾驭Blender?
由于有着原生级别的软硬件结合,所以NVIDIA的GPU在Blender就会有得天独厚的优势,而在目前笔记本市场上,有专门面向内容创作用户的RTX Studio笔记本,搭载了NVIDIA RTX系列GPU,所以我们这次就来看看这类笔记本在Blender里面,实际渲染性能表现是怎样的。
为此我们选择了一台来自技嘉的AERO 17 HDR XB设计师笔记本,它配备17.3英寸4K分辨率的超窄边框屏幕,在22mm厚度的机身里面,塞入了NVIDIA RTX 2070 SUPER with Max-Q GPU,以及Intel Core i7-10875H八核CPU在的高规格硬件,非常适合用于做内容创作,也通过了NVIDIA RTX Studio认证,有关它的更多详细介绍和评测,可以参阅我们另外一篇文章《技嘉AERO 17 HDR XB设计师笔记本评测:虚拟主播的加力推进器》。
产品规格参数
这次Blender性能测试部分主要分为两个,首先是Blender官方的跑分软件Open data Benchmark,带有多个不同模型、场景,能很好地反映Blender对硬件的支持和需求情况,其实大家也可以从网上下载该benchmark来测试自己现有平台,再对比我们这里的成绩,可以有更直接的体会。
当然跑分benchmark只是一部分考验,到真实创作使用上,还是有所不同的,所以为了更好地结合3D动画从业者们的实际情况,我们联系了国内专注于Blender学习与交流的网站:斑斓中国社区(Blendercn.org),为我们提供了两个他们实际制作的Blender项目,用作第二部分的性能测试。
Open data Benchmark
目前Open data Benchmark最新版已经带有与Blender正式版相同的2.83,在技嘉AERO 17 HDR XB笔记本上面,可选基于OptiX、CUDA运算的两种GPU渲染,以及传统的CPU运算,我们这次测试采用了命令行方式运行,以确保最好的运行兼容性和稳定性,而AERO 17 HDR XB笔记本设置为CPU和GPU到最大性能等级,散热系统设为游戏模式,并安装最新RTX Studio驱动。
这个测试的结果并没有什么意外,GPU渲染的速度完全碾压了CPU渲染,这与Blender官方给出成绩情况是类似的,而且同样GPU渲染下,采用OptiX设置相比CUDA也有着数倍的差距,可见RTX 2070 SUPER with Max-Q这样支持光线追踪的GPU,会在Blender更有性能优势,只有在不带有RT Cores、不支持OptiX的GTX 16系列GPU上,才会采用CUDA的设置。
实际项目渲染测试
不同于benchmark只是无情地跑个渲染成绩给大家看,在Blender实际工作里面,渲染其实还主要分为了视口渲染(Viewport render)和最终渲染(F12 render)两种,前者用于可以实时预览建模的大致渲染效果,所以为追求速度,采用了动态BVH(层次包围盒),还有一些动态模糊、图块渲染在内的设置会被忽略,而最终渲染就是把当前帧导出成品图片了,它会把工程里面的所有效果和设置全部都渲染出来,所以耗时要更久,对硬件的要求也更高一些。
我们在这部分的渲染测试用到了两个工程文件:一个为由斑斓中国原创组制作的NVIDIA logo项目,项目添加了很多光照效果,而软件测试用了最新的Blender 2.83稳定版;另外一个由斑斓中国古生物组-FXZT制作的有多种恐龙摆pose的3D模型场景,这个因为用到了更新的OptiX功能,所以测试需要Blender 2.90每日更新版,这个项目的复杂程度其实也相较更高。
视口渲染
一些对3D动画软件有所了解的读者,可能会知道在其它渲染器里面,虽然GPU渲染的速度很快,但会带来明显的噪点,需要提高samples参数,并加上降噪(denoise)处理,那么在最新版的Blender里面,它支持了名为OptiX AI-Accelerated的降噪功能,这利用到NVIDIA RTX GPU的Tensor Cores,通过机器学习锻炼的AI来提高渲染画质,而且在速度上比传统降噪方式也要更快。
现有Blender的视口渲染和最终渲染,都是可以开启OptiX AI-Accelerated降噪,所以我们可以来看看Blender在Cycles渲染器设置成GPU渲染后,视口渲染的响应反馈,以及对比分别在CPU和GPU渲染下,加入降噪后的最终渲染图画质。
Cycles渲染器在设置OptiX成GPU渲染后,把Shading工作区切换到视口渲染模式,可以看到灰模的材质、光照以及反光效果,基本都会在2-3秒就渲染出来大致形态,即使在场景的三维空间拖动模型,让观看的镜头视角改变,GPU渲染的响应也非常快速,只需等一阵子就完成初步渲染,几乎能做到实时的预览,但在CPU设置下,引擎的渲染速度就变得非常缓慢,需要耗费数分钟的时间才能看到大致的模型外貌。
通过采集不同设备设置下视口渲染的整个处理过程,在计算和对比各自耗费的时间后,可以看到基于OptiX的GPU渲染,完成整个视口渲染的耗时,要比用CPU来工作快很多,最高去到5倍的差距,验证了上述的在拖动模型进行变换操作时,GPU渲染响应更快速,能做到接近实时预览的表现,而在CPU渲染下,即使想预览建模的基本渲染画面,也要等待约26秒左右的时间(在恐龙项目内)。
最终渲染
通过对比两个项目各自不同设置下的四张最终渲染图,可以看到GPU渲染的画质是非常不错的,而且有点意外的是,CPU渲染在Blender里面出来的最终渲染图,甚至是不如GPU渲染的来得好看,即便不加降噪,GPU渲染也有不错的画面纯净度,在加上降噪后就观感更好,但CPU渲染却不太满意,特别恐龙那个项目,直接CPU渲染出来的图片同样有较明显的噪点,也要加上降噪才能消除掉一些画面杂质。当然CPU渲染还是有一点优势在于,它给到的画面清晰度会稍微好一些。
在Blender的Cycles渲染器设备支持可谓全面和灵活了,它可以设置CPU、OptiX GPU、CUDA GPU和OpenCL GPU,甚至可以支持多卡互联的渲染,可玩性还是挺高的,但考虑到实际应用环境,这里最终渲染测试只选择了CPU、OptiX GPU、CUDA GPU,以及各自加入了AI降噪后的渲染耗时。
最终渲染速度的成绩与benchmark的情况基本一致,GPU渲染要大幅快于CPU渲染,而OptiX又会比CUDA还要更快,采用RTX系列GPU真的可以省下非常多的时间成本,另外还可以看到的是,即使加上AI降噪,也并不会带来更长的渲染耗时,这应该是因为这个AI功能,用到了RTX系列GPU核心内独立的Tensor Cores来做的,所以不影响GPU的渲染运算工作。
测试总结
可见无论在Open data Benchmark,还是实际的工程项目里面,得益于Blender Cycles渲染器对NVIDIA RTX系列GPU的极佳优化,让技嘉AERO 17 HDR XB这样高阶RTX Studio笔记本,可以完全有能力胜任3D动画软件渲染工作,它即可适用于那些准备在Blender做商业项目的专业用户,又对于希望学习和入门Blender的学生、新手,都一体式解决了他们在硬件方面的需求。
当然技嘉AERO 17 HDR XB主要面向的是高端专业设计用户,所以在国内的售价比较高,但如今市面上的RTX Studio笔记本还是比较多了,大家可以根据自身预算和使用强度作选择,只要认准RTX系列GPU就好,因为它们在Blender的表现实在太高效了,这也让我们期待NVIDIA与Blender还会有更多的深入合作,利用到GPU硬件特性,把这个3D动画软件做得更好。
访谈斑斓中国
最后,因为我们网站本身是做电脑硬件评测,在3D动画制作方面多少会显得班门弄斧,不敢轻言阔论,所以我们觉得让实际的从业人员也来分享一些故事,会更为贴切,因此我们与斑斓中国社区的裴哥作了些相关的交流,一同聊聊Blender目前在国内的发展状况,也帮助大家更好地了解NVIDIA RTX GPU对这个3D动画软件的支持程度。
(1)Blender目前在国内的接受程度怎样?
问:Blender作为一个开源的3D动画制作软件,它目前在国内的接受程度怎样? 斑斓中国社区是目前国内少有专注与Blender交流的网站,目前用户主要群体都有哪些,他们又主要在用怎样的硬件进行动画制作呢?
答:从个人用户角度来说,在不考虑工具软件和数据资产知识产权保护的前提下,很多用户首先考虑的是一个工具软件和自己已经在使用的工具软件对比,看看哪个更加顺手,很遗憾的是在几年前Blender处于下风,没有积累到太多的用户。
不过在Blender2.8以后,同样的前提条件下,Blender在效率、集成度、易用性、所见即所得的实时性上超过了很多用户手里正在使用的软件,这一两年Blender的认知度在迅猛的提高,在认知度提高的先决条件下,学习和采用Blender的用户也在几何级的增长,就看B站那么多人开了那么多的基础班,依然还在供不应求,跟图形沾边的行业的用户都在他们的头部用户的带领下,开始接触到Blender,然后开始学习和采用Blender。
特别是最近半年多,很多人都困在了家中,他们在这段时间从听说Blender转变到接触Blender再到接受Blender。社区在B站的几位成员开的频道也从前两年的几百个关注达到现在的两三万的关注量,可能可以从这里窥斑见豹找到一些迹象说明国内用Blender的人多了起来。
很多文创企业因为自身不需要在3D动画这一块形成核心竞争力,因为他们的盈利模式并没有高度依赖于软硬件技术革新,也不需要软件去节省综合成本,现阶段我们还是以企业内的技术或者艺术总监级用户是否有能力掌握Blender并将其应用到工作流程中作为判断标准。因为这部分用户有很强的技术路径依赖,以及很多利益捆绑,所以,社区只能跟已经具备相当能力的部分关键用户进行连接。更多的面向企业进行推广的事情,社区不具备相应的资源去劝说和实施。
我们对Blender用户的侧写是:一切有可视化需求的用户群体。繁星点点,散落在各行各业。远看都是闪闪发光,近看大家的业务差距都隔着十万八千里。这也是社区需要非常多的知识储备去应对如此需求不一致的用户群体,耗费了不少的人力和资源,看着成效不够大的原因。
现在的社区活跃用户已经积累了大量Blender知识和技能,在他们各自行业里对Blender形成了依赖,他们的很多解决自身行业问题的方案都是基于Blender来做的。因为Blender涉足到各种可视化和跟图形想关的行当,最近一年的超快速功能更新,让Blender在国内扩展了不少的用户群体:比如游戏制作里面的概念和原画设计这个领域有非常多的Blender新用户:Blender的实时渲染引擎和可以在三维中绘制立体图像的蜡笔工具以及很多辅助插件可以相当迅速的帮助他们完成项目。
大众化的影视广告业有很多专业的Blender用户,MC的同人动画制作有很多年纪很小的用户,珠宝设计利用到Blender的快速出图功能有的用户只用了几个月就建立起了对行业里其他软件用户的绝对优势,电商的各自产品图样的快速渲染,考古学中的场景还原和生物复原,建筑行业的BIM可视化快速展现,室内外场景基于RTX的快速渲染等,大家都在积极探索Blender如何应对各自行业的可视化需求。
Blender从2.8版本开始,就把硬件的支持时限从八年减少到了五年(从软件发布向前推的年份数),因为很多新软件功能依附于较新的硬件配置。少部分已经更新到RTX显卡下,大部分的硬件还停留在四五年前的水平。不过因为Blender有一个靠图形API输出渲染图像的渲染引擎Blender EEVEE,生成动画这个功能大部分用户在没有硬件升级的情况下也还算过得去。
很多Blender EEVEE的用户在希望这个引擎支持vulkan这个新的图形API,这样的软件升级也会带来很多的硬件升级需求。根据已经将显卡升级到RTX的用户反馈,基于RTX的Blender cycles渲染预览速度已经跟实时的Blender EEVEE不相上下,而且有更好的光影视觉反馈。
(2)RTX技术的GPU渲染在Blender做得怎样?
问:基于RTX技术的GPU渲染带来了光线追踪技术,这在现有版本Blender里面的利用和优化又做得怎样?现有Blender已经支持了利用RTX GPU去做AI denoise降噪,那在3D动画制作中,还有其它哪些方面可以利用上AI、机器学习的特性?
答:2019年SIGGRAPH上,Blender的掌门人ton跟NVIDIA CEO JHH进行了一次亲密的双边会谈,这次会面是非常有建设性的,JHH宣布将optix的授权协议跟Blender这种开源软件的协议相适配,也就是将这些先进的技术输出和集成到Blender中,供广大的Blender用户使用。
在Blender开发团队还不能太好驾驭optix的情况下,JHH让NVIDIA的开发人员PATRICK MOURS对Blender的cycles进行改造,并开源了相关的实现。现在Blender中的RTX的实现和优化是原厂级的,就在最近的2.90的版本更新中,还将刚在optix SDK7.5中的出现的毛发曲线实现放进了Blender。相信一些未完成的RTX功能实现和技术转移将在后续的Blender版本中逐渐完成。
对使用Blender的用户,我们社区已经部署了RTX显卡的用户一致推荐去购买一张RTX显卡或搭载RTX GPU的设计师笔记本来体验这种原厂级的丝滑支持,以及设计师PC,设计师笔记本等多种类设备支持为Blender用户带来更灵活的选择性以适应不同工作场景。
3D动画是计算机图形学在应用方面的集大成者,有很多方面可能会用到AI,机器学习,数不胜数,因为我们获得的知识和信息不是很全面、可能造成眼界比较狭隘,不过我们能够看到的例子也可以举出一些,如下:以前用动作捕捉来进行动画制作,最近几年的论文都在通过深度学习和相关指令,让人形角色和其他动画角色自己跟虚拟场景进行交互,再录制成为动画,并作为数字资产供后续流程的动作控制使用。
直接通过识别照片中物体或者通过单摄像头识别各种物体再生成三维物体的AI 机器学习技术也在发展,现阶段这方面的技术可以参与到动画制作的前期策划中,作为各种简单的数字资产制作的补充技术。未来在硬件的不断发展完善下,这些技术会进一步应用到动画制作的流程当中。
通过AI计算,减少流体和烟雾在细节上的计算也是比较新的研究课题,最近一两年这片领域也开始有人在进行研究,也许不远的将来,在烟雾流体特效的模拟和渲染上,我们也能够看到成百上千倍的提速。
如果还要讲得深远一些,可能这幅图可以很直观的理解以后的AI和机器学习技术能怎么做。
内容更新时间(UpDate): 2023年05月21日 星期日
版权保护: 【本文标题和链接】动画专业用什么显卡(学动画用什么显卡好一点) http://www.youmengdaxiazuofa.net/longxia8/130593.html

- 全部评论(0)